

# Field joint coating systems for 3LPP and 3LPE coated pipe



Flame sprayed field Joint coatings

- Polyethylene up to 80°C operating temperature
- Polypropylene up to 110°C operating temperature

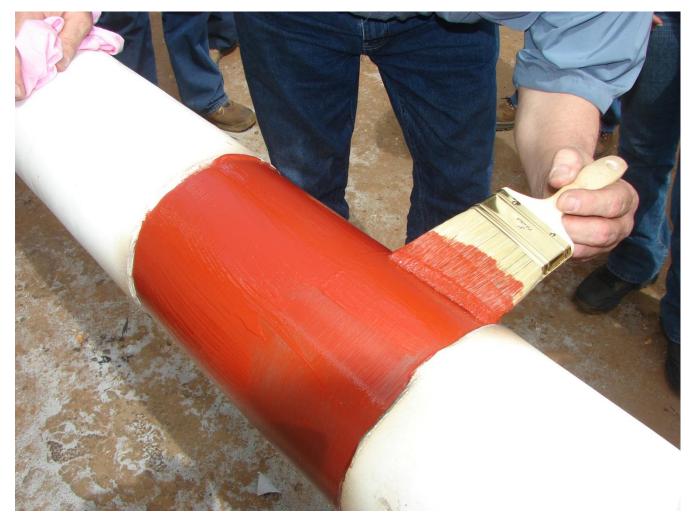
### Design Aims

- Simple field joint coating application, avoid complex, expensive equipment, minimise carbon footprint.
- Avoid use of elevated preheat temperatures = speeds up the operation and eliminates risk of damage to line coating.
- Minimum steps in application procedure = easy to apply, easy to inspect = repetitive quality.
- Use of high performance Novalac liquid coating as base coat, guarantees high performance.
- Use of high performance, flame spray topcoats developed to give total melt/seal to outer 3LPE /3LPP coating.



Traditional FJC system used in Canada on 3LPE needs 2 uses of induction coil to install, especially in cold weather.






Procedure:

- Apply Novalac base coat by brush or roller.
- Dry flock first PE/PP powder layer onto wet Novalac base coat.
- With IR heater heat FJC surface area to >50°C to melt PE/PP powder and cure Novalac.
- Flame spray PE/PP topcoat.



### Liquid Novalac base coat



#### Flocking PP powder onto wet base coat





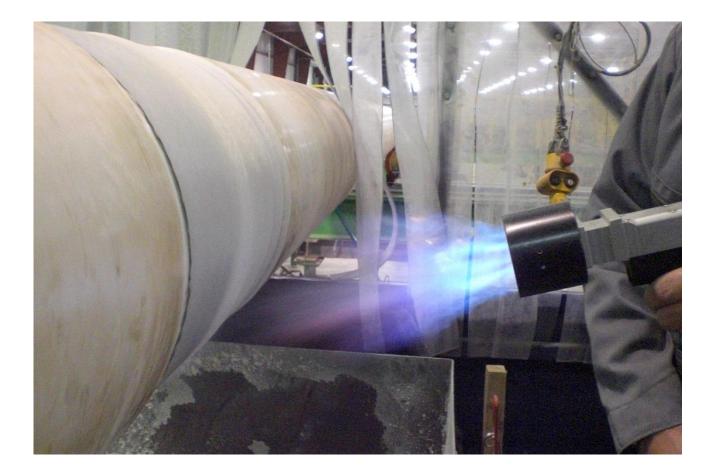
#### Flocking PP powder onto wet base coat





#### Flame spray Polypropylene

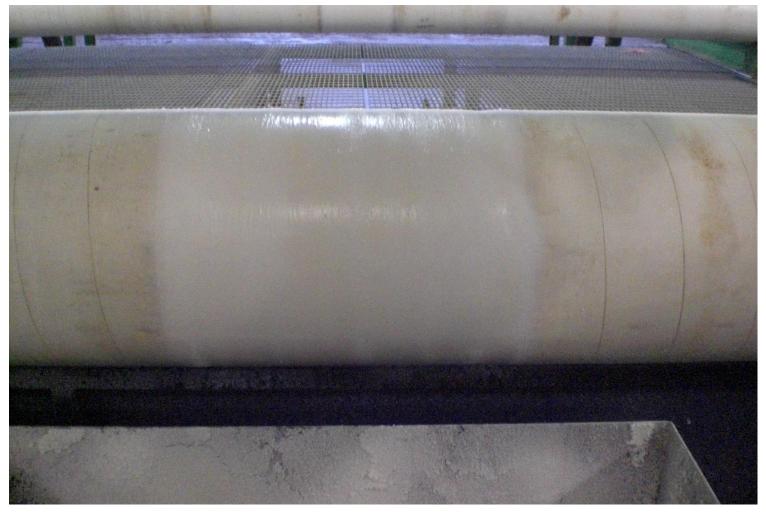





#### Flame spray Polypropylene






Flame Spray – up to 5 times faster than previous flame spray systems







### Finished PP Field Joint 2–5mm thick





### Finished PP Field Joint





### Finished PP Field Joint






#### Can be flushed immediately for tie-in burial or lay barge work





#### Finished joint totally compatible with line coating







#### PE system basecoat applied and flock in process





Flock layer melted and ready for top coat





### Finished PE joint 2.5-5mm thick



IR heater for preheating and curing of Novalac. Lighter/cleaner/lower cost than induction coils



Coatsol flame spray equipment crate with water and oil separators and dehumidifier. Connect to 30 CFM compressor and propane gas bottle to start work.





#### Manoeuvrable and lightweight Installation Equipment



#### **PP** Physical Properties

| Oxidative Induction Time (at 220°C)                                    | ISO 21809-1:<br>(ISO 11357-6)                 | >40 Minutes            |
|------------------------------------------------------------------------|-----------------------------------------------|------------------------|
| Cathodic Disbondment 28 days @ 90°C                                    | CAN/CSA-Z245.20                               | <5mm radial            |
| Adhesion after hot water soak<br>28 days @ 80°C                        | CAN/CSA-Z245.20                               | Class 1                |
| Peel Strength @ 23°C (over Novalac)                                    | ISO 2180-39: Annex D                          | >12 N/mm               |
| Peel Strength @ 90°C (over Novalac)                                    | ISO 21809-3: Annex D                          | >5 N/mm                |
| Hardness @ 25°C                                                        | ASTM D-2240 Shore D                           | >60                    |
| Flexibility @ 0°C                                                      | CAN/CSA-Z245.20                               | No cracks @<br>3°C PDD |
| Impact resistance @ 23°C                                               | DIN 30670                                     | >20 Joules             |
| Tensile Elongation (at break) of topcoat @ 25°C (after flame spraying) | ASTM D-638                                    | 10%                    |
| Taber Abrasion topcoat                                                 | ASTM D-4060/84, H18<br>500Gm load 1000 cycles | 55 mg weight<br>loss   |
| Vicat Softening Point                                                  | ISO 306                                       | 116°C                  |
| Applied thickness for system                                           | Min' recommended                              | 2.0 mm                 |

# **Key Advantages**

Excellent in-service performance properties

- Low pre-heat temperatures <50°C. No risk to line coating integrity
- Low carbon footprint
- Lightweight, manoeuvrable, installation equipment
- No electric power required
- Easily installed in cold weather without induction heating
- Manpower reduced compared to other systems
- Complete melt with line coating at overlap
- Superior performance to sleeves, FBE based alternatives
- Simple inspection unlike sleeves or FBE based systems

# **Key Advantages**

- Environmentally friendly. Low carbon footprint. VOC free base coat and inert topcoat powders
- Easy inspection ensures quality every joint; no possibility of entrapped air as with shrink sleeves or other laminated systems
- Fast and easy repair method

Main applications

- Field joint coating on 3LPE + 3LPP
- Repairs to damaged 3LPE + 3LPP
- Coating of induction bends and accessories on 3-layer coated projects
- Rehabilitation of live pipelines to replace failing plant coating or FJC. No need to stop flow in the line

### **Application Limitations**

No Limit on size of pipe. Bigger = more difficult for sleeves in terms of voids and for FBE based systems, bigger = larger coils and cost rises greatly. There is no practical size limitation for either of the two Coatsol flame sprayed systems described